Virus- and interferon-induced loss of inhibitory M2 muscarinic receptor function and gene expression in cultured airway parasympathetic neurons.

نویسندگان

  • D B Jacoby
  • H Q Xiao
  • N H Lee
  • Y Chan-Li
  • A D Fryer
چکیده

Viral infections increase vagally mediated reflex bronchoconstriction. Decreased function of inhibitory M2 muscarinic receptors on the parasympathetic nerve endings is likely to contribute to increased acetylcholine release. In this study, we used cultured airway parasympathetic neurons to determine the effects of parainfluenza virus and of interferon (IFN)-gamma on acetylcholine release, inhibitory M2 receptor function, and M2 receptor gene expression. In control cultures, electrically stimulated acetylcholine release increased when the inhibitory M2 receptors were blocked using atropine (10(-)5 M) and decreased when these receptors were stimulated using methacholine (10(-)5 M). Acetylcholine release was increased by viral infection and by treatment with IFN-gamma (300 U/ml). In these cells, atropine did not further potentiate, nor did methacholine inhibit, acetylcholine release, suggesting decreased inhibitory M2 receptor function and/or expression. Using a competitive reverse transcription-polymerase chain reaction method, we demonstrated that M2 receptor gene expression was decreased by more that an order of magnitude both by virus infection and by treatment with IFN. Thus, viral infections may increase vagally mediated bronchoconstriction both by directly inhibiting M2 receptor gene expression and by causing release of IFN-gamma which inhibits M2 receptor gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-stranded RNA causes airway hyperreactivity and neuronal M2 muscarinic receptor dysfunction.

Viral infection causes dysfunction of inhibitory M2 muscarinic receptors (M2Rs) on parasympathetic nerves, leading to airway hyperreactivity. The mechanisms of M2R dysfunction are incompletely understood. Double-stranded RNA (dsRNA), a product of viral replication, promotes the expression of interferons. Interferon-gamma decreases M2R gene expression in cultured airway parasympathetic neurons. ...

متن کامل

Retinoic acid prevents virus-induced airway hyperreactivity and M2 receptor dysfunction via anti-inflammatory and antiviral effects.

Inhibitory M(2) muscarinic receptors on airway parasympathetic nerves normally limit acetylcholine release. Viral infections decrease M(2) receptor function, increasing vagally mediated bronchoconstriction. Since retinoic acid deficiency causes M(2) receptor dysfunction, we tested whether retinoic acid would prevent virus-induced airway hyperreactivity and prevent M(2) receptor dysfunction. Gui...

متن کامل

Current Neurobiology 2011; 2 (1): 23-29

M2 muscarinic receptors are expressed on both parasympathetic and sympathetic nerve endings where they function as autoinhibitory receptors to limit release of acetylcholine and norepinephrine, respectively. M2 muscarinic receptor expression on parasympathetic nerves is decreased by viral infection and by gamma-interferon (IFNγ) and increased by dexamethasone; and these effects are of clinical ...

متن کامل

Parainfluenza virus infection damages inhibitory M2 muscarinic receptors on pulmonary parasympathetic nerves in the guinea-pig.

1. The effect of viral infection on the function of neuronal M2 muscarinic autoreceptors in the lungs was studied in anaesthetized guinea-pigs. 2. Guinea-pigs were inoculated intranasally with either parainfluenza type 3 or with a vehicle control. Four days later the animals were anaesthetized, paralysed and artificially ventilated. Pulmonary inflation pressure, tidal volume, blood pressure, an...

متن کامل

Dexamethasone prevents virus-induced hyperresponsiveness via multiple mechanisms.

In the lungs, neuronal M2 muscarinic receptors inhibit acetylcholine release from the parasympathetic nerves. Parainfluenza virus infection causes loss of M2 receptor function, which increases acetylcholine release and vagally mediated bronchoconstriction. Because glucocorticoids are known to inhibit airway hyperresponsiveness, we tested whether dexamethasone (6.5 or 65 microg/kg i.p.) prevents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 1998